Stats 2 Poisson Distribution Questions

- 1 A study undertaken by Goodhealth Hospital found that the number of patients each month, X, contracting a particular superbug can be modelled by a Poisson distribution with a mean of 1.5.
 - (a) (i) Calculate P(X = 2). (2 marks)
 - (ii) Hence determine the probability that exactly 2 patients will contract this superbug in each of three consecutive months. (2 marks)
 - (b) (i) Write down the distribution of Y, the number of patients contracting this superbug in a given 6-month period. (1 mark)
 - (ii) Find the probability that at least 12 patients will contract this superbug during a given 6-month period. (2 marks)
 - (c) State **two** assumptions implied by the use of a Poisson model for the number of patients contracting this superbug. (2 marks)
- 1 The number of A-grades, X, achieved in total by students at Lowkey School in their Mathematics examinations each year can be modelled by a Poisson distribution with a mean of 3.
 - (a) Determine the probability that, during a 5-year period, students at Lowkey School achieve a total of more than 18 A-grades in their Mathematics examinations. (3 marks)
 - (b) The number of A-grades, Y, achieved in total by students at Lowkey School in their English examinations each year can be modelled by a Poisson distribution with a mean of 7.
 - (i) Determine the probability that, during a year, students at Lowkey School achieve a total of fewer than 15 A-grades in their Mathematics and English examinations.

 (3 marks)
 - (ii) What assumption did you make in answering part (b)(i)? (1 mark)

2	The number of computers, A , bought during one day from the Amplebuy computer store can be modelled by a Poisson distribution with a mean of 3.5 .													
	The number of computers, B , bought during one day from the Bestbuy computer store can be modelled by a Poisson distribution with a mean of 5.0 .										store can be			
(a) (i) Calculate $P(A = 4)$.									(2 marks)					
		(ii)	Determine P	ine $P(B \leq 6)$.								(1 mark)		
(iii) Find the probability that a total of fewer than 10 computivo stores on one particular day.										mpute	iters is bought from these (3 marks)			
(b) Calculate the probability that a total of fewer than 10 computers is bought fro two stores on at least 4 out of 5 consecutive days.									rom these (3 marks)					
(c) The numbers of computers bought from the Choicebuy computer store over 10-day period are recorded as								e over	a					
			8	12	6	6	9	15	10	8	6	12		
(i) Calculate the mean and variance of these data							ta.				(2 marks)			
 (ii) State, giving a reason based on your results in part (c)(i), whether or not a Poisson distribution provides a suitable model for these data. (2 2 The number of telephone calls per day, X, received by Candice may be modelled by a Poisson distribution with mean 3.5. 								ot a (2 marks)						
								by a						
The number of e-mails per day, Y , received by Candice may be modelled by a Pois distribution with mean 6.0 .									isson					
	(a) For any particular day, find:													
		(i)	P(X=3);										(2 marks)	
		(ii)	$P(Y \geqslant 5)$.										(2 marks)	
	(b)	(i)	Write down the distribution of T , the total number of telephone calls and e-mails per day received by Candice. (1 mark)											
		(ii) Determine $P(7 \le T \le 10)$. (3 max)										(3 marks)		
	(iii) Hence calculate the probability that, on each of three consecutive days, Candice will receive a total of at least 7 but at most 10 telephone calls and e-mails. (2 marks													

Stats 2 Poisson Distribution Answers

	independently	B1	2	
	l	D.1	2	(unless very few patients)
(c)	attacks patients: randomly (p constant)	B1		mean of 1.5 $\Rightarrow p$ small (B1)
()	= 0.197	A1	2	
	=1-0.8030	M1		
(ii)	$P(Y \ge 12) = 1 - P(Y \le 11)$			
(b)(i)	$Y \sim P_o(9.0)$	B1	1	
(ii)	$p = (0.251)^3 = 0.0158$	M1A1√	2	on their p from (i)
1(a)(i)	$P(X = 2) = \frac{e^{-1.5} \times (1.5)^{2}}{2!} = 0.251$ $p = (0.251)^{3} = 0.0158$ $Y \sim P_{o}(9.0)$ $P(Y \ge 12) = 1 - P(Y \le 11)$	M1A1	2	

1(a)	For a 1-year period			
	The number of A grades $\sim Po(3)$			
	For a 5-year period			
	•			
	Number of A grades ~ Po(15)	B1		
	P(Total A-grades > 18)			
	$=1-(\text{Total} \le 18)$	M1		
	=1-0.8195			
	= 0.1805			
	= 0.181	A1	3	AWFW 0.180 to 0.181
(b)(i)	$X + Y \sim Po(10)$	B1		
	11 (10)			
	$P(X+Y \le 14) = 0.917$	M1A1	3	AWFW 0.916 to 0.917 incl
(ii)	X and Y are independent variables.	E1	1	
	Total		7	